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I use a stochastic production frontier to model energy efficiency trends in 85 countries over a 37-year period.
Differences in energy efficiency across countries are modeled as a stochastic function of explanatory variables
and I estimate the model using the cross-section of time-averaged data, so that no structure is imposed on
technological change over time. Energy efficiency is measured using a new energy distance function ap-
proach. The country using the least energy per unit output, given its mix of outputs and inputs, defines the
global production frontier. A country's relative energy efficiency is given by its distance from the frontier—
the ratio of its actual energy use to the minimum required energy use, ceteris paribus. Energy efficiency is
higher in countries with, inter alia, higher total factor productivity, undervalued currencies, and smaller fossil
fuel reserves and it converges over time across countries. Globally, technological change was the most impor-
tant factor counteracting the energy-use and carbon-emissions increasing effects of economic growth.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The empirical purpose of this paper is to estimate the levels of,
and trends in, energy efficiency for most countries in the world
over recent decades; to investigate the factors that are associated
with variations in energy efficiency across countries; and to investi-
gate the implications of trends in energy efficiency and other factors
for global energy use and carbon emissions. Methodologically, the
paper introduces a new energy distance function approach to defining
and measuring energy efficiency and a new econometric approach to
estimating such models.

Though energy intensity (energy/GDP) is often used as a measure
of energy efficiency, it is a crude and inaccurate indicator of the true
technical efficiency with which a country uses energy (Ang, 2006).
For example, countries with cold winters or larger shares of output
derived from mining will, ceteris paribus, use more energy per unit
of output than those with mild winters or smaller mining sectors.
But this does not mean that they are necessarily using energy in a
less efficient way given their climate and economic structure. In the
distance function framework developed in this paper, the country

using the least energy per unit output, given its mix of outputs and
energy carriers and other inputs, defines the global production fron-
tier. Countries' relative energy efficiencies are given by their distances
from the frontier or, in other words, the ratio of their actual energy
use to the minimum required energy use, ceteris paribus. Countries
may converge towards, or diverge from, the best practice frontier
over time, which itself will shift with technological change.

In previous research on sulfur emissions and energy efficiency, I
used the Kalman filter to model individual technological change
trends in each country in a panel data set (Stern, 2005, 2007). In
this paper, I instead use an indirect method of estimating the trends
in energy efficiency that further develops the between estimation ap-
proach I previously applied to estimating the environmental Kuznets
curve (Stern, 2010b). I use the cross-section of time-averaged data to
estimate the long-run parameters of a stochastic production frontier
where the stochastic state of energy efficiency in the cross-section is
modeled as a function of additional explanatory variables. Then I
derive the level of energy efficiency over time in each country as
the time series residual computed using these long-run parameters.
This approach has several advantages. It is much less computationally
intensive than the Kalman filter, imposes no structure on the time
trends, and controls for potential correlation between the level of
energy efficiency and the other explanatory variables.
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A few recent papers (Filippini and Hunt, 2011; Wang, 2011; Wei
et al., 2009) pursue related but different approaches to modeling
aggregate energy efficiency. Filippini and Hunt (2011) use a stochas-
tic frontier approach to estimate the differences in energy efficiency
across OECD countries. However, they assume that these differences
are random rather than a systematic function of other variables and
that there is a common trend in energy efficiency across the OECD.
The current paper is global in scope, does not make these simplify-
ing assumptions, and is based on the formal productivity literature
rather than the energy demand modeling approach used by Filippini
and Hunt. As Filippini and Hunt use a demand function framework,
their measure of energy efficiency is contingent on energy prices in
each country. Filippini and Hunt's definition of energy efficiency,
therefore, measures how well consumers and producers respond
to the economic environment with policy parameters such as fuel
taxes taken as given. By contrast, in this paper, I try to uncover the
deeper drivers of differences between countries' economic environ-
ments that will result in variations in both local energy prices and
levels of energy efficiency.

Wei et al. (2009) compute energy efficiency using a distance func-
tion approach, but their energy efficiency index differs significantly
from that proposed in this paper. They use data envelopment analysis
rather than a stochastic frontier model to compute their energy effi-
ciency index for a panel of 29 Chinese provinces over the 1997–2006
period. They then regress the estimated energy efficiency index on a
variety of explanatory variables. Themodel in the current paper inte-
grates both steps into a single stochastic frontier model rather than
using a two-stage procedure. Wang (2011) uses index number decom-
position tomodel changes in energy intensity for the Chinese provinces.
In common with the decomposition in the current paper he attributes
part of the change to changes in capital and labor intensity. But his
approach does not explain the differences between provinces and re-
quires very detailed data that is not available globally.

The following section of the paper develops the production
frontier model and introduces the econometric methods. The third
section of the paper reviews the relevant literature on the adoption of
energy efficiency technology. The fourth section presents the econo-
metric results and the convergence and decomposition analyses. The
final section provides a discussion and conclusion.

2. Theory and methods

2.1. Energy distance function

In this section, I develop a model for estimating technical energy
efficiency using a distance function approach, which is a generaliza-
tion of the framework I introduced previously (Stern, 2005, 2007). A
distance function is a specialized form of production frontier model
used to measure technical inefficiency. Inefficiency is measured by
the relative distance of the actual levels of outputs and inputs from
the best practice levels given by the production frontier. Convention-
ally, distance from the frontier is measured in “input” or “output”
directions. The output distance function measures by how much
output could be increased if best practice was used, while the input
distance function measures by how much all inputs could be reduced
to produce the same level of output. But we can measure distance in
any direction in the multi-dimensional production space.

Fig. 1 presents a two input, single output example, where E is
energy and K is capital. L(Y0) is the isoquant for the level Y0 of out-
put. Points to the left and below the isoquant are infeasible. Points
to the right and above the isoquant are technically inefficient as less
energy and capital could be used to produce the output Y0. Point A
is inefficient as it uses more energy and capital than necessary,
while C, which reduces both inputs along a ray from the origin, is
efficient. The value of the input distance function for A, given output
Y0, is the distance A0 divided by C0. But B, which instead reduces

energy use alone, is also an efficient point. E1/E0 is the distance in
this “energy direction”. This is simply the ratio of energy use to the
minimum technically feasible energy input, ceteris paribus, and is
the measure of relative energy efficiency used in this study.

In order to define the energy distance function formally in the
general multiple output case, I define the input requirement set, F,
following Färe and Primont (1995):

Ft yitð Þ ¼ Eit ;xitð Þ : Eit ;xit ; yitð Þ∈Ttð Þ ð1Þ

where T is the set of feasible production vectors under best practice, E
is a vector of energy inputs, y a vector of outputs, and x a vector of
non-energy inputs. i indexes individuals—in this paper, countries—
and t periods—in this paper, years. The best practice technology is
common to all countries but may change over time. Then the energy
distance function is defined as:

dEit Eit ;xit ; yitð Þ ¼ sup
λ λ > 0 : Eit=λ;xit ;ð Þ∈Ft yitð Þð Þ ð2Þ

That is, the distance in the energy direction indicates the greatest
factor by which all the energy inputs can be reduced on condition that
the specified output remains feasible. For feasible input vectors ditE≥1.
If ditE=1, production is as energy efficient as possible given the global
state of technology.

The energy distance function is homogenous of degree one in the
energy vector. Increasing all energy inputs by 1% with no increase in
output or change in the non-energy inputs results in a 1% increase
in distance. But for a 1% increase in output the reduction in energy
distance is greater than or equal to 1% for a constant or decreasing
returns to scale technology. Fig. 2 illustrates this for the two input
and a single output constant returns to scale case. The technology
can be represented by a single isoquant, which is the boundary of
the feasible input requirement set F. For point A, energy distance is
e3/e0. An increase in output, Y, is equivalent to a contraction in the
levels of both E/Y and K/Y to say point B. At point B, energy distance
is e2/e1. If only energy use per unit output had decreased, energy
distance would instead be e2/e0≥e2/e1. For increasing returns tech-
nologies, whether the effect of output has a more or less than one to
one effect on energy distance will depend on the degree of returns to
scale and the elasticity of substitution between energy and the other
input.

2.2. Econometric model

If we want to distinguish between several different energy inputs
and to disaggregate output it is not feasible to estimate a flexible

Fig. 1. Multi-input energy efficiency.
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functional form such as the translog or quadratic function (Färe et al.,
2010) given the available data. Additionally, some variables such as
natural gas use are zero in some countries in some years so that a
Cobb–Douglas function for all the disaggregated inputs and outputs
is also not feasible. The following model is a Cobb–Douglas function
with somewhat ad hoc factors to adjust the constant term, α0, for
the effects of input and output mix on energy distance, dE:

α0K
αK
it HαH

it Eitexp αWWitð Þ exp
P5

j¼2
βjejit

 !

YαY
it exp

P4

k¼2
γkykit

 !
AE
ft

¼ dEitυit ð3Þ

where E is aggregate energy use, Y is aggregate output, K is capital, H is
human capital, andW is winter temperature. The ej are the shares of the
various fuels in total energy use and the yk are the shares of the indus-
tries in total output. As these shares sum to unity, one type of energy
and one type of output are treated as the defaults and dropped from
the model. υ is a probably serially correlated error term with mean
zero that may reflect measurement and approximation errors as well
as the dynamics of adjustment to long-run equilibrium. AftE represents
the frontier—hence the f subscript—state of technology. Smaller values
of Aft

E indicate more advanced and energy efficient technologies. Im-
provements in this global state of best practice technology increase
the distance from the frontier in all countries, ceteris paribus. To identify
the model, I assume that the mean over time of the frontier state of
technology is unity, i.e. ln AfE=0, where the lack of a time subscript
indicates a time-averaged mean.

I consider temperature to be an input, as a warmer climate con-
tributes to economic activity and substitutes for energy use. The coef-
ficient of temperature should be positive, as a country with higher
winter temperatures would be less efficient and further from the
frontier, ceteris paribus. The coefficients αK and αH are also expected
to be positive. Fig. 1 illustrates this for αK. Increasing capital while
holding energy and output constant, for example moving from point
D, which is technically efficient, to point A, which is technically inef-
ficient, results in an increase in distance in the energy direction.

Oil is treated as the default fuel and is dropped from the function.
Therefore, the coefficients of the fuel shares represent the partial
derivatives of distance with respect to a reduction in the share of
oil and an increase in the share of the fuel in question and reflect
the qualities of the different fuels (Stern, 2010a). The coefficients of
higher quality fuels should be positive as, countries with higher
shares of more productive fuels are, ceteris paribus, more inefficient.
The coefficients of the industry shares have a similar interpretation
with manufacturing treated as the default. More energy intensive

industries will have positive coefficients, as a country that has a
greater share of energy intensive industries will be more efficient,
ceteris paribus, than one that has the advantage of a less energy in-
tensive industry structure.

Imposing αY=1+αK+αH, taking logarithms, and manipulating
yields the following model for the log of energy intensity:

ln
Eit
Yit

¼ −α0−αK ln Kit=Yitð Þ−αH ln Hit=Yitð Þ−αWWit−
X5

j¼2

βjejit

þ
X4

k¼2

γkykit þ lnuit

lnuit ¼ lnAE
ft þ lndEit þ υit

ð4Þ

Therefore, the effects of the explanatory variables on energy
intensity are the opposite of their effects on distance. More capital-
and human capital-intensive economies should be less energy inten-
sive as these inputs substitute for energy. Warmer countries should
be less energy intensive and countries that use lower quality fuels
or have an industry mix with a higher share of energy intensive
industries should be more energy intensive.

2.3. Estimation

Panel data contain two dimensions of variation—the differences be-
tween countries—the “between variation” and the differences over time
within countries—the “within variation”. Fixed effects estimation—also
known as the “within estimator”—eliminates the average differences
between countries prior to estimation so that the coefficient estimates
primarily exploit the variation within the countries. The between esti-
mator only exploits variation across countries and not within countries.
In the absence of a variety of misspecification issues and time effects,
both of these estimators as well as other panel estimators should con-
verge on identical estimates in large samples (Pesaran and Smith,
1995). But empirically, the various estimators diverge due to misspeci-
fication error and differences in the treatment of time effects.

Given two standard assumptions of linear regression—that the
regression slope coefficients are common to all countries (and im-
plicitly time periods) and that there is no correlation between the re-
gressors and the error term—the between estimator is a consistent
estimator of the long-run relationship between the variables when
the time series are stationary or stochastically trending and is super-
consistent for cointegrating series (Pesaran and Smith, 1995). A further
advantage of the between estimator is that it makes no assumptions
about the nature of the time effects (Stern, 2010b).

The between estimator has been shunned by researchers due to the
concern that omitted variables represented by the individual effects
may be correlated with the included explanatory variables. As the indi-
vidual effects are absorbed into the regression residual term, the error
term and the regressors may be correlated leading to inconsistent esti-
mates of the regression coefficients. The random effects estimator,
which treats the individual effects as error components, suffers from
a similar potential bias. Random effects and fixed effects estimates,
which should both be consistent estimators in the absence of such a
correlation (assuming that there are no other econometric issues) are
commonly found to be significantly different in the environmental
Kuznets curve literature (e.g. Stern and Common, 2001). However,
this is only one of several potential misspecifications of panel data
models. Hauk and Wacziarg (2009) show that the between estimator
is the best performer among potential panel data estimators even
when the orthogonality assumption is violated but measurement
error is present. Additionally, fixed effects estimation of the slope coef-
ficients tends to converge to short-run rather than long-run effects and
it also tends to amplify the effects of measurement error and other
noise, which the between estimator smoothes out (see Stern, 2010b).

Fig. 2. Effect of output increase on energy distance.
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However, when estimating a model such as Eq. (4), the issue of
omitted variable bias is more clear-cut than usual. The unobserved
local state of technology, ln Ait

E=ln Aft
E+ln ditE, included in the residual

is chosen by economic actors jointly with the levels of the inputs, and
in particular capital (Eberhardt and Teal, 2011). There are four main
approaches for addressing this omitted variables bias in the current
context: instrumental variables, fixed effects, adding covariates or
modeling the technology term as a function of auxiliary observable
variables, and possibly by imposing identifying restrictions. These
approaches can also be combined (Breusch et al., 2011), though I do
not consider such estimators here.

Unfortunately, it is hard to think of credible instrumental vari-
ables in this macro-economic context. For example, initial values of
the explanatory variables are likely to be correlated with the omitted
state of technology. Fixed effects estimation eliminates the average
effects of omitted variables in each country before estimating the
model. However, we wish to explain the differences in technology be-
tween countries rather than eliminate them and, as discussed above,
this “within estimator” has other problems. On the other hand, if a
sufficient number of auxiliary variables that co-vary with the unob-
served state of technology can be included in the model, the correla-
tion between the remaining residual term and the regressors will be
eliminated.

Rather than include the additional variables directly in the re-
gression equation, I assume that the inefficiency term, ln diE, is a func-
tion of these auxiliary variables. I implement this using a stochastic
frontier approach where the mean of the one-sided inefficiency
terms is a function of auxiliary explanatory variables (Battese and
Coelli, 1995; Kumbhakar and Lovell, 2003; Kumbhakar et al., 1991)
and the stochastic frontier is estimated using the cross-section of
time-averaged data for each country in the fashion of the linear
between estimator. I discuss the choice of auxiliary variables in the
following section of the paper. The estimated model is:

ln
Ei
Yi

¼ −α0−αK ln K=Yð Þi−αH ln H=Yð Þi−αWWi−
X5

j¼2

βjeji þ
X4

k¼2

γkyki

þ lndEi þ lnυi

lndEi e Nþ δ′wi;σ
2
d

! "

lnυi e N 0;σ2
υ

! "

lnui ¼ lndEi þ lnυi

ð5Þ

where the year subscript, t, has been dropped to indicate that the
variables are averaged over time. lndiE, has a truncated (at zero) nor-
mal distributionwithmeanδ0wi and standard deviation σd, wherewi
is the vector of auxiliary variables and δ a vector of parameters to
be estimated. lnυi is assumed to be normally distributed with mean
zero and standard deviation συ. As the minimum of lndiE is zero, diE≥1
as required. lnυi and ln diE are assumed to be distributed independently
of each other.

I estimate Eq. (5) bymaximum likelihood (Battese and Coelli, 1993)
using the RATS procedure MAXIMIZE with the options BHHH and
ROBUSTERRORS. The values of diE are estimated as the expected value
conditional on the estimated value of the residual, lnûi (Kumbhakar
and Lovell, 2003), where the hat indicates an estimate. The estimate
of the error term, lnυ̂ i, is then retrieved using lnυ̂ i ¼ lnûi− lnd̂E

i . The
estimated time-varying technology and distance variables are retrieved
as follows. First we calculate:

lnv̂it ¼ ln
Eit
Yit

þ α̂0 þ α̂K ln K=Yð Þit þ α̂H ln H=Yð Þit þ α̂WWi

þ
X5

j¼2

β̂ jejit−
X4

k¼2

γ̂kykit− lnυ̂ i

ð6Þ

which is composed of the following components:

lnv̂it ¼ lnÂE
ft þ lnd̂E

it þ lnυ̂ it− lnυ̂ ið Þ ð7Þ

I assume that the final term in Eq. (7) is stationary with mean zero
and that the estimated trend in technology in each country, lnÂE

it ¼
lnÂE

ft þ lnd̂E
it , is quite smooth (Rotemberg, 2003). I use the Hodrick–

Prescott filter (Hodrick and Prescott, 1997) to smooth Eq. (7) using the
default tuning parameter of 100 for annual data. Then:

lnÂE
ft ¼

min
t lnÂE

it

! "
ð8Þ

and distance from the frontier can be retrieved as follows:

lnd̂E
it ¼ − lnÂE

it þ lnÂE
ft ð9Þ

3. Factors affecting the choice of energy efficiency technology

There are few studies that try to explain variations in energy effi-
ciency across countries at the macro-economic level, so I first review
the factors that have been found to affect technology diffusion more
generally.

Recent theory and empirical results in development economics
find that differences in income per capita between countries cannot
be explained by differences in capital stocks, even including human
capital, alone (Easterly, 2002; Parente and Prescott, 2000). Total fac-
tor productivity (TFP) varies across countries. Comin and Hobijn
(2004) gather data on many key innovations over the last three
centuries and examine their rate of adoption across what are now
the developed economies. They find that adoption rates across coun-
tries have mostly converged over time, the rate of catch-up has in-
creased, that there is a strong correlation between the level of GDP
and the level of adoption of each technology, and that innovations
mostly occur in the leading economy of the time and then trickle
down to the other countries. Comin and Hobijn (2010) confirm the
length of adoption lags and their dramatic reduction over time for a
much larger sample of countries. Comin and Hobijn (2004) also find
significant evidence of “technology locking”. It takes a long time for
new technologies to dominate old ones and significant investment
continues in non-frontier technologies. Their regression analysis
shows that high adopters of predecessor technologies adopt succes-
sor technologies more rapidly too. They suggest that factor endow-
ments, openness to trade, and political institutions are likely to be
most important in explaining these differential adoption rates. Various
theories predict a relation between factor endowments and technology
adoption including q-complementarity between capital goods and
existing factor endowments (such as between computers and skilled
labor), the role of factor-saving technologies which will be differen-
tially adopted where a factor is scarce, and the idea of “appropriate
technology”—a particular technology can only be implemented suc-
cessfully by countries with the appropriate portfolio of endowments.
Countries that are more open to trade are likely to be faster adopters
due to the greater importation of other high technology goods, the
lower influence of vested monopoly interests in an open economy, and
the resulting higher degree of competition in the domestic economy.

Comin and Hobijn's regression analysis indicates that higher GDP
per capita—a proxy for capital and technology endowments—and
human capital indicators are both positively correlated with the rate
of adoption. Benhabib and Spiegel (2005) carry out an empirical anal-
ysis of the international diffusion of TFP finding a positive role for
human capital in the catch-up process. I include a general total factor
productivity variable in the model to reflect these human capital and
technology factors as well as an indicator of openness to trade.

Policymakers are often assumed to maximize a representative indi-
vidual's utility where utility is a function of per capita consumption and

2203D.I. Stern / Energy Economics 34 (2012) 2200–2208
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shared environmental quality (Jones and Manuelli, 2001; Weitzman,
2009). Energy use is a rough proxy for total environmental impact
(Common, 1995) so that environmental quality can be measured as
energy use per unit area or energy density. In order to explain the
choice of energy efficiency level, we need a proxy for what energy
density would be in the absence of policies to improve energy effi-
ciency. Assuming that energy and capital are poor substitutes, capital
per unit area or capital density could be such a proxy and I include
this variable in the model. The higher capital density is, the more
stringent we would expect environmental policies to be.

However, policy makers do not necessarily act optimally to maxi-
mize welfare. Parente and Prescott (2000) argue that the level of tech-
nology adopted in a country depends on policy barriers raised against
the adoption of foreign technology. In the case of environmental tech-
nology, the lack of correction of environmental market failure due
to either an ineffective or corrupted political process could raise an
additional barrier against technology adoption. Fredriksson et al.
(2004) investigate the effect of corruption and industry sector size
on energy policy outcomes. The main predictions of their theory are
that: (i) greater corruptibility of policy makers reduces energy policy
stringency; (ii) greater lobby group coordination costs (increased
industry sector size) results in more stringent energy policy; and
(iii) workers' and capital owners' lobbying efforts on energy policy are
negatively related. They test these predictions empirically for a number
of OECD countries using Transparency International's corruption
perception index and find that they hold upwell. I include corruption
and inequality variables as auxiliary variables. Comin and Hobijn
(2004) find that military regimes, effective legislatures, and heads
of government who do not hold official roles, all deter the rapid
adoption of new technologies. Though it is not clear whether more
democratic regimes will have better or worse environmental policy
(Jones and Manuelli, 2001; Comin and Hobijn (2004), I include a de-
mocracy variable in the model.

Firms and households may also make systematically inefficient
choices given the policy environment due to market failures, market
barriers, and behavioral failures (Gillingham et al., 2009). In addition
to environmental externalities and failures of innovation markets,
market barriers to increased energy efficiencymay include information
problems and liquidity constraints in capital markets (Gillingham et al.,
2009). These will raise the implicit costs of energy efficient capital,
thoughAllcott andGreenstone (2012) argue that the absolute increased
energy use due to these is small. It is not clear what variables that
might vary across countries are correlated with differences in infor-
mation problems. One option tomodel liquidity constraints is including
a capital market and/or banking “depth” variable such as the private
credit variable developed by Beck et al. (2000). But this data is only
available for a subset of countries, which does not include China. Behav-
ioral failures are harder to account for and anyway there is no evidence
that they differ significantly across countries or across time.

There are a small number of empirical studies that do examine the
factors affecting the level of energy efficiency technology and policy
adoption. Matisoff (2008) carried out an empirical analysis of the fac-
tors affecting the adoption of energy efficiency programs across U.S.
states. He finds that the most significant variable is citizen ideology.
A broad band of states from Florida to Idaho has not adopted any
energy efficiency policies. A potential source of data on ideology at
the global level is the World Values Survey (Inglehart and Welzel,
2005), but using this data directly would mean dropping about half
the countries in the sample. Matisoff (2008) also found that the initial
level of criteria air pollutants was significant in regressions for the
number of programs adopted and in probit models for the adoption
of a renewable portfolio standard. This variable is proxied in my
framework by capital density. He also found that the CO2 intensity
of the state's economy had a significant negative sign in some regres-
sions. Gas and coal production per capita, income, and the policies of
neighboring states did not, however, have significant effects. Wei

et al. (2009) find that energy efficiency is negatively associated
with the secondary industry share in GDP, the share of output from
state-owned firms in GDP, and the government expenditure share
in GDP, and is positively associated with the level of general technol-
ogy and the non-coal share in energy consumption. I include a fossil
fuel reserves variable in the model, as this variable is more exoge-
nous than consumption.

Stern (2005) estimated trends in sulfur abating technology finding
that countries converged into clubs. These clubs appear to be related
to legal origin (La Porta et al., 2008) as Japan and theGermanic language
countries adopted the most stringent and English-speaking countries
the least stringent technology, with Mediterranean countries adopting
a middle level. Davis and Lacroix (2011) also find that the environ-
mental Kuznets curve for French legal origin countries lies below
that for English legal origin countries. Blanchard (2004) presents
data on the stringency of product and labor market regulation. This
data shows that countries of English legal origin have the lowest
levels and countries of French legal origin the highest levels of regula-
tion with German and Scandinavian legal origin countries occupying
the intermediate position. Dummies for legal origin and for former
and current Communist countries are included as auxiliary variables.

An alternative approach would be to use average energy prices in
each country to proxy the level of technology, as higher real energy
prices would be expected to result in greater energy efficiency. While
the IEA maintains a database of energy prices in the OECD there is no
easily available database for developing countries. Apart from taxes,
the main factor that will affect the effective price of imported energy
across countries is the deviation of each country's exchange rate
from purchasing power parity (PPP). The lower a currency is below
the purchasing power parity exchange rate themore costly imported
energy is relative to domestic goods and services. Therefore, I include
the ratio of a country's prices to PPP as an auxiliary variable.

4. Data and results

4.1. Data

I compiled a database for the years 1971–2007 for 85 countries as
described in the Appendix. The extent of the time period is deter-
mined by the availability of energy data for the non-OECD countries.
Countries were eliminated from the sample if they did not have rea-
sonably complete series for the national accounting data. Unfor-
tunately, this eliminated most former Soviet Bloc countries. I also
dropped all oil producers with a larger share of GDP generated in
the mining and utilities section than Norway has (19%). Several
such oil producers had apparent TFP's much greater than that of the
US due to the contribution of oil resources to the economy. Fig. 3
shows the average values of energy intensity for each of the countries
in the sample as a function of GDP per capita. In contrast to the usual

Fig. 3. Energy intensity and GDP per capita.
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patterns seen in the literature (e.g. Lescaroux, 2010; Medlock and
Soligo, 2001), there is neither an inverted-U shape curve nor much
of a monotonically declining relationship in this data. This is because
I use GDP adjusted for purchasing power parity and include tradi-
tional biomass in the energy use variable.

4.2. Econometric results

Table 1 presents the econometric results. In addition to the sto-
chastic frontier model, I estimated between and within models. The
between estimate has an R-squared of 0.43. For the between estima-
tor, higher winter temperatures are associated with significantly
greater distance from the frontier, ceteris paribus, as expected. All

the fuels are found to be of lower quality than oil as their coefficients
are negative. This is somewhat surprising, as primary electricity and
perhaps natural gas are usually thought to be higher quality energy
carriers than oil (Cleveland et al., 2000). Coal has the most negative
coefficient showing it to be the lowest quality fuel. All three industrial
sectors have positive coefficients showing them to be more energy
intensive than manufacturing, which with the exception of mining
is also surprising. However, these parameters are either insignificant-
ly different from zero or only slightly significant. Most importantly,
the coefficients of the capital and human capital variables are nega-
tive, which is theoretically inconsistent with the distance function
model.

The skewness of the between residuals is 0.414 (p=0.126) and
kurtosis is 1.451 (p=0.009). The Jarque–Bera test of normality
yields a statistic of 9.886 (p=0.007). Therefore, we can reject the
null hypothesis that the residuals are normally distributed. I also
estimated half-normal and truncated-normal stochastic frontiermodels
without any auxiliary variables but these estimates were not signifi-
cantly different from the between estimates.

However, when we include the auxiliary explanatory variables the
results are quite different. The standard deviation of the residuals, συ,
is just under 2/3 of its simple between estimates value showing the
explanatory power of the model is larger. These residuals are normal-
ly distributed. The tests of skewness and excess kurtosis have signifi-
cance levels of 0.54 and 0.19 respectively. The likelihood ratio statistic
for restricting the model to the between model is 69.23, which is dis-
tributed as approximately chi-squared with 13 degrees of freedom
and is highly significant.

The estimates of the distance function parameters are in many
cases quite different to their between estimator counterparts. Most
importantly, the coefficients of capital and human capital are now
positive, which is consistent with theory. With the exception of bio-
mass, the coefficients of the fuels are smaller in absolute value and
the coefficients of the industrial sectors are all lower with agriculture
and other industries and services having negative coefficients though
none of these are significant. Natural gas is now the highest quality of
the four fuels but still lower quality than oil.

Among the auxiliary variables, the capital density, inequality, and
democracy variables have zero or completely insignificant coefficients.
The remaining variables all have t-statistics greater than unity in abso-
lute value. Higher TFP is associated with greater efficiency, as wewould
expect. The elasticity is large—a 1% increase in general TFP results in a
1.3% improvement in energy efficiency. A higher exchange rate relative
to the PPP level results in less energy efficiency. In contrast to the
usual assumption that opening to trade will allow the adoption of
more energy efficient technologies, we find that the more open an
economy is, the less energy efficient it is. Possibly, more open econo-
mies have more of their economic activity in energy intensive sub-
industries within the mining and manufacturing sectors.

Higher transparency is associated with higher energy efficiency as
expected. Countries with greater fossil fuel reserves relative to the
size of their economies are less energy efficient. Countries of German
and Scandinavian legal origin (Scandinavia, Germany, Austria, Bulgaria,
China, Hungary, Japan, Korea, Poland, and Switzerland) aremore energy
efficient than countrieswith English origin legal systems, ceteris paribus,
and countries with French origin legal systems occupy an intermedi-
ate position as Stern (2005) found for sulfur abatement technology.
Former communist countries are significantly less energy efficient
than English legal origin countries, ceteris paribus.

The fixed effects results are also inconsistent with theory. In par-
ticular, capital and labor have negative coefficients and mining has a
very negative coefficient. There is no constant or coefficient for winter
temperatures in these results due to the fixed effects.

Fig. 4 shows the estimated time series of energy efficiency, ÂE
it , for

all countries in all time periods. To interpret the figure, remember
that energy efficiency is measured relative to the country on the

Table 1
Econometric estimates.

Variable Between
estimator

Fixed effects
(within estimator)

Stochastic frontier:
auxiliary variables

Distance function parameters
Constant −4.006 11.454

(−1.71) (1.16)
Capital −0.153 −0.261 0.292

(−1.50) (−15.96) (1.15)
Human capital −0.422 −0.514 0.589

(−2.80) (−36.56) (1.05)
Winter 0.015 0.011

(1.50) (1.32)
Coal −0.998 −0.706 −0.485

(−3.00) (−14.06) (−1.28)
Natural gas −0.653 −0.828 −0.416

(−1.21) (−14.61) (−0.87)
Primary elec. −0.897 0.001 −0.732

(−1.90) (0.02) (−1.50)
Biomass −0.543 −0.206 −0.867

(−1.53) (−3.79) (−3.48)
Agriculture 0.270 −0.550 −0.225

(0.27) (−5.64) (−0.21)
Mining 1.796 −1.051 0.144

(1.33) (−8.77) (0.13)
Other 1.038 −1.046 −0.850

(1.11) (−13.10) (−0.96)

Technical inefficiency model and error variances
Constant 9.278

(1.59)
ln TFP −1.296

(−1.63)
ln Capital density −0.012

(−0.32)
ln PPP 0.884

(5.79)
ln Openness 0.113

(1.38)
Corruption −0.050

(−1.47)
Inequality 0.000

(0.00)
Democracy 0.000

(0.00)
Fossil res. 0.008

(1.42)
Ger/Scand L.O. −0.251

(−1.22)
French L.O. −0.107

(−1.23)
Former comm. 0.538

(2.17)
σd 0.011

(0.01)
συ 0.352 0.134 0.220

(3.04)
Log likelihood −26.059 1933.58 8.555
Model vs. OLS 69.228

(0.000)

t-statistics are in parentheses for parameters, p-values for LR tests.
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frontier at the time-averaged mean, which has an efficiency, ÂE
f , of

unity. A country with an energy efficiency of 2 uses twice the energy
of that frontier country, ceteris paribus, and is half as efficient. Away
from the sample mean, some countries are more efficient than the
most efficient country at the sample mean and have distances of less
than one. The residual data points below the main grouping of data
are for Lebanon, which had very erratic income from year to year.

There is a much stronger global relationship between income per
capita and this measure of energy efficiency than there is between
the former variable and energy intensity. Energy efficiency has im-
proved over time among most high-income countries and among
many poorer countries that started the period with very low levels
of efficiency. But energy efficiency was flat over time or declining
in many developing economies.

Fig. 5 shows the development of energy efficiency over time in
Australia and the major economies of China, India, Germany, Japan,
and the United States, which show convergence. Japan starts the period
as the most energy efficient country but it sees less improvement
over time (and none after 1990) than the other developed economies.
China converges towards the other economies and its rate of improve-
ment slows. According to Zhou et al. (2010), China's rapid progress in
the 1980s and 1990swas the result of explicit energy efficiency policies,
while its low initial energy efficiency is typical of the post-communist
states.

Fig. 6 shows the time paths of energy efficiency for six major
developing economies: China and India, which also appear in Fig. 5,
and Brazil, Indonesia, Mexico, and South Africa. With the exception
of China and to a lesser degree India, energy efficiency has been more
or less flat or decreasing in these developing economies over this
period.

4.3. Convergence analysis

In the current context, β-convergence tests whether there is a
negative correlation between the initial level of energy efficiency
and its growth rate so that efficiency increases faster in initially less
efficient countries resulting in those countries converging to the best
practice frontier (Quah, 1996). σ-convergence investigates changes in
the cross-sectional variance of energy efficiency over time. I test for β-
convergence using the following regression:

lnÂE
i2007− lnÂE

i1971 ¼ μ0 þ μ1 lnÂ
E
i1971 þ εκi ð10Þ

The results are presented in Table 2. The hypothesis of non-
convergence is strongly rejected. The slope is −0.65 with a t-statistic
of −5.75. But the constant term is 0.271 (t=2.23), so that countries
that started the period with a high level of energy efficiency tended to
become less energy efficient over time as we see in Fig. 6.

The standard deviation of lnÂE
it declines from 0.697 in 1971 to

0.595 in 1982 but then increases to 0.759 in 2007. So there appears
to be σ-convergence in the 1970s and divergence from the early
1980s onwards. Fig. 7 demonstrates these patterns quite clearly.
There is σ-convergence in the 1970s and early 1980s, more stability
of the distribution in the 1990s and some divergence in the 2000s.
The countries with lowest energy efficiency in 2007 are: Zimbabwe,
Congo (Kinshasa), Togo, Zambia, and Tanzania, Nicaragua, and Ghana.
These appear to be responsible for much of the divergence. The stan-
dard deviation in 2007 without these countries was 0.500.

Previous research, discussed by Le Pen and Sévi (2010), mostly
found convergence of energy intensity among developed economies
but no convergence in samples that included both developed and
developing countries. Le Pen and Sévi (2010) applied a pairwise
cointegration test to convergence of energy intensities in 97 countries
rejecting the global convergence hypothesis. The current study shows
that divergence in energy efficiency is mostly associated with econo-
mies that are lacking in economic progress.

4.4. Decompositions of energy use and carbon emissions

The decompositions of energy use and carbon emissions are based
on the method developed by Stern (2002). I add the log of output to

Fig. 4. Underlying energy efficiency and GDP per capita.

Fig. 5. Energy efficiency: Australia and major economies.

Fig. 6. Energy efficiency: major developing economies.

Table 2
Beta convergence regression.

Coefficient Standard Error

Constant 0.271 0.122
Initial energy efficiency −0.650 0.113
R-squared 0.285
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both sides of Eq. (5) to derive an equation to predict energy use.
Then, to assess, for example, the contribution of economic structure
to global energy use, we hold all other explanatory variables to their
levels in the previous period while allowing economic structure to
change as it actually did and observing the resulting predicted coun-
terfactual energy use in each country in each year. The logarithmic
difference contribution of factor k globally in year t is then:

Δ lnEkt ¼ ∑
i
SitΔ lnEkit ð11Þ

whereΔ ln Ekitis the change in the logarithm of energy use in country
i in year t under the scenario where only factor k changes and Sit is
the share of country i in global energy use in year t. The percentage
contribution of factor k over the period 1971–2007, rk, as shown in
Table 3 is:

rk ¼ exp ∑
t
Δ lnEkt

# $
−1 ð12Þ

These contributions aggregate to the total global change in energy
use multiplicatively:

E2007−E1971
∑
t
Et

¼ −1þ∏
k

1þ rkð Þ ð13Þ

The carbon decomposition analysis is carried out using the same ap-
proach but replacing predicted energy use with predicted emissions
and the shares of energy use by shares of carbon emissions in
Eqs. (11) to (13).

Global energy use increased by 121% from 1971 to 2007. As global
GDP rose by 269%, global energy intensity fell by 40% over the period.
Because more economic growth occurred in less energy efficient
countries such as China the contribution of growth in each country

to global energy use is greater than 269%. Changes in fuel mix raised
energy use by 4% while shifts in economic structure reduced energy
use by 9%. Capital deepening reduced energy intensity by 7% as capital
substituted for energy. Capital accumulation also made a relatively
small contribution to reduced energy intensity in China in contrast
to Wang's (2011) finding that capital accumulation was the main
driver of reduced energy intensity in China. The relatively slow
global increase in human capital resulted in substitution of energy
for human capital and a 45% increase in energy intensity globally,
ceteris paribus. The most important mitigating factor though was
technological change, which lowered energy use by 55%. The relatively
high level of aggregation of industrial structure probably results in an
overestimation of the contribution of technological change to the
reduction in energy intensity. More disaggregated studies attribute
a greater role to structural change and a smaller role to technological
change (Stern, 2011).

The results for carbon are very similar. Data were only available up
till 2006. The global carbon intensity of energy use fell from 2.54 t of
CO2 per ton of oil equivalent in 1971 to 2.40 in 2006. As a result, fuel
mix has a smaller effect on carbon emissions than on energy use. In
both the case of energy use and carbon emissions, the actual increase
over the period is less than half the increase that would have occurred
due to the scale effect alone.

5. Discussion and conclusions

This paper introduces new approaches to measuring and estimat-
ing the level of and trends in energy efficiency and investigating the
factors associated with the varying levels of energy efficiency across
countries. The model is applied to a panel data set for 85 countries
over the 1971–2007 period.

We found that between and fixed effects models result in theoret-
ically inconsistent values for the parameters of the capital and human
capital inputs. These estimates are presumably biased due to omitted
variables. When auxiliary variables are included in the model for the
error term the coefficients take more plausible values suggesting
that the bias has been removed. Assuming that the auxiliary explan-
atory variables have removed the correlation between the stochastic
component of the technology term and the regular regressors in the
model, this approach should lead to consistent estimates of the long-
run parameters. The estimates of the trends in energy efficiency are
not constrained by any particular assumptions about the time series
model generating those trends. The results mostly make intuitive
and theoretical sense, though the time-averaged estimators have
wide standard errors for many of the regression coefficients.

We find that the most important variables affecting the state of
energy efficiency are TFP and the ratio of the exchange rate to the
PPP exchange rate. More technologically advanced economies have
higher energy efficiency, ceteris paribus. But countries with more
undervalued currencies also tend to be more energy efficient. The
extracted trends show that energy efficiency has improved over
time in most developed countries. Some less energy efficient devel-
oping countries such as China and India also saw rapid progress.
But other developing countries that were relatively efficient at the
beginning of the period experienced flat or declining energy effi-
ciency. Overall, there was convergence in energy efficiency across
countries over time except for some African countries that have
experienced economic troubles and declining energy efficiency in
recent years.

The global decompositions of energy use and carbon emissions
have similar results. The two most important factors affecting energy
and emissions intensity are technological change and substitution of
energy for human capital. The latter factor increases energy and emis-
sions intensity, while technological change tends to reduce emissions
and energy intensity over time.

Table 3
Decomposition.

Energy 1971–2007 Carbon 1971–2006

Capital/GDP ratio −7.04% −6.85%
Human capital/GDP ratio 44.79% 45.54%
Fuel mix 3.93% 1.82%
Economic structure −9.29% −9.58%
Technology −55.45% −56.88%
Scale 294.84% 282.53%
Total 123.20% 105.86%
Residual −2.38% −3.17%
Change in energy and emissions 120.81% 102.70%

Fig. 7. Distribution of energy efficiency over time.
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